DUSTRAN—A GIS-based Dispersion Modeling System

Jeremy Rishel
Pacific Northwest National Laboratory
SCAPA 2007 Annual Meeting
DUSTRAN Development

Background

- A multi-year research project that started in January 2001.
- Purpose was to develop a fully-tested and documented atmospheric dispersion modeling system to assist the U.S. Department of Defense in addressing particulate air quality issues at military training/testing ranges.
- Result: DUSTRAN—DUST TRANsport
- Investigators and contributors:
 Jerry Allwine (Lead), Elaine Chapman, Brad Fritz, Bonnie Hoopes, Jeremy Rishel, Fred Rutz, Will Shaw, Tim Seiple
DUSTRAN Components

- The basic approach in formulating DUSTRAN was to construct the system from widely-used, industry-standard components:
 - Graphical User Interface (GUI): ArcMap GIS (Version 9.x)
 - Dispersion Models:
 - CALPUFF (Scire et al. 2000a)—EPA regulatory Lagrangian puff dispersion model
 - CALGRID (Scire et al. 1989)—widely used Eulerian dispersion model
 - Meteorological Model:
 - CALMET (Scire et al. 2000b)—diagnostic meteorological model that uses surface and upper-air observations to construct 3-D fields
- Emissions Model (source-term specification):
 - Currently, DUSTRAN includes dust emission modules for creating source-term factors from both wind-blown dust generation and wheeled military vehicle activities.
 - DUSTRAN’s componentized architecture lends to the development and integration of other source-term models, including source-terms for emergency response.
DUSTRAN Interface:

- Standard ArcMap Interface and Toolbar
- DUSTRAN Scenario Development Console
- Organized Model Layers
- Graphical Source and Domain Creation
DUSTRAN Scenario Development:

- Intuitive model interfaces allows for quick scenario development:
 - Select site (created from Add Site utility…more on this later)
 - Graphically create:
 - Model domain (20-400 km)
 - Source types:
 - Point
 - Area
 - Line
 - Enter simulation, release, and averaging time information through descriptive text and list-box entries.
Sample DUSTRAN Simulation:

• Lake Breeze Event: Chicago IL, June 25, 2005 (7:00 a.m.-6:00 p.m. CST).

• Complex wind pattern develops as lake breeze moves inland throughout mid-morning to early evening.

• DUSTRAN is able to capture and simulate the spatial variability of the wind-field and its affect on a material release.
EMERGENCY MANAGEMENT ROUNDUP

Chicago Lake Breeze: 06/05/05 (11:00 a.m. LST)
Chicago Lake Breeze: 06/05/05 (2:00 p.m. LST):
Chicago Lake Breeze: 06/05/05 (6:00 p.m. LST):
Other DUSTRAN Productivity Tools:

- **Add-Site Utility**: companion tool that allows for the creation of a model-ready site, including all standard GIS layers, for direct use in a DUSTRAN simulation.

- **Met-Archiver**: archives meteorological observations from the National Weather Service (NWS) and NOAA’s MADIS archiving system. Archived data is available for direct use in a DUSTRAN simulation.
Future DUSTRAN Development:

- A possible name change…since DUSTRAN is extensible to modeling other source types and scenarios.
- Incorporation of the recently-released sub-hourly CALPUFF/CALMET models.
- A website which describes the modeling system in greater detail and how to obtain the software.
Questions?

• Dr. Jerry Allwine:
 – Email: jerry.allwine@pnl.gov
 – Phone: 509-375-6741

• Jeremy Rishel:
 – Email: jeremy.rishel@pnl.gov
 – Phone: 509-375-6974